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Abstract

In this paper, we obtain new results about the orthogonality measure of orthogonal polynomials on the
unit circle, through the study of unitary truncations of the corresponding unitary multiplication operator, and
the use of the five-diagonal representation of this operator.

Unitary truncations on subspaces with finite co-dimension give information about the derived set of the
support of the measure under very general assumptions for the related Schur parameters (an). Among other
cases, we study the derived set of the support of the measure when limn|an+1/an| = 1, obtaining a natural
generalization of the known result for the López class limn an+1/an ∈ T, limn|an| ∈ (0, 1).

On the other hand, unitary truncations on subspaces with finite dimension provide sequences of unitary
five-diagonal matrices whose spectra asymptotically approach the support of the measure. This answers a
conjecture of L. Golinskii concerning the relation between the support of the measure and the strong limit
points of the zeros of the para-orthogonal polynomials.

Finally, we use the previous results to discuss the domain of convergence of rational approximants of
Carathéodory functions, including the convergence on the unit circle.
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1. Introduction

In [7,8], a new operator theoretic approach for the orthogonal polynomials with respect to a
measure on the unit circle T := {z ∈ C : |z| = 1} was established. The five-diagonal representa-
tion of unitary operators introduced there has proved to be a powerful tool for the study of such
orthogonal polynomials, as it has been shown in [26,27], where numerous new results have been
obtained (for a summary of some of the main new results in [26,27], see [25]). Let us summarize
the main facts concerning this five-diagonal representation, since it is the starting point of this
paper.

In what follows � denotes a probability measure on T with an infinite support supp �. Then,

U�: L2
� −→ L2

�
f (z)→zf (z)

,

is a unitary operator on the Hilbert space L2
� of �-square-integrable functions with the inner

product

(f, g) :=
∫

f (z)g(z) d�(z), ∀f, g ∈ L2
�.

The associated five-diagonal representation is just the matrix representation of U� with respect
to an orthonormal Laurent polynomial basis (�n)n�0 of L2

�. This basis is related to the usual

orthonormal polynomials (�n)n�0 in L2
�, defined by

�n(z) = �n(z
n + · · · + an), �n > 0, (�n, �m) = �n,m, n, m�0,

through the relations [29,7]

�2j (z) = z−j�∗
2j (z), �2j+1 = z−j�2j+1(z), j �0, (1)

where, for every polynomial p of degree n, p∗(z) := znp(z−1) is called the reversed polynomial
of p. The five-diagonal representation has the form [7]

C(a) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a1 −�1a2 �1�2
�1 −a1a2 a1�2 0
0 −�2a3 −a2a3 −�3a4 �3�4

�2�3 a2�3 −a3a4 a3�4 0
0 −�4a5 −a4a5 −�5a6 �5�6

�4�5 a4�5 −a5a6 a5�6 0
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where a := (an)n�1 satisfies |an| < 1 and �n := �n−1/�n = √
1 − |an|2. The transposed

matrix C(a)t of C(a) is also a representation of U�, but with respect to the orthonormal Laurent
polynomial basis (�n∗)n�0, where f∗(z) := f (z−1) for any Laurent polynomial f.

C(a) and C(a)t can be identified with unitary operators on the Hilbert space �2 of square-
sumable sequences in C, these operators being unitarily equivalent to U�. Due to the properties of
the multiplication operator, the spectrum of C(a) and C(a)t coincides with supp �, the mass points
being the corresponding eigenvalues. Since the eigenvalues are simple, the essential spectrum of
C(a) and C(a)t (that is, the spectrum except the isolated eigenvalues with finite multiplicity) is
the derived set {supp �}′ of supp �.
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a is called the sequence of Schur parameters of �. The Schur parameters establish a one to one
correspondence between sequences in the open unit disk D := {z ∈ C : |z| < 1} and probability
measures on T with infinite support. The Schur parameters also appear in the forward recurrence
relation

�n�n(z) = z�n−1(z) + an�
∗
n−1(z), n�1, (3)

that generates the orthonormal polynomials, which is also equivalent to the backward recurrence
relation

�nz�n−1(z) = �n(z) − an�
∗
n(z), n�1. (4)

Therefore, the matrix C(a) provides a connection between this practical way of constructing
sequences of orthonormal polynomials on T, and the properties of the related orthogonality
measure �, lost in such construction. In particular, the spectral analysis of C(a) permits us to
recover features of supp � from properties of the Schur parameters a. Only in the case |an| < 1
the matrices C(a) are related to a measure on T with infinite support. However, they are well
defined unitary matrices even if |an|�1. As we will see, this is important when using perturbative
arguments for the analysis of the measure.

In this paper, we use unitary truncations of C(a) as a source of information for the spectrum
and the essential spectrum of C(a), that is, for supp � and {supp �}′. Let us denote by {en}n�1 the
canonical basis of �2, and let �2

n := span{e1, e2, . . . , en}. As we will see in the following section,
for any infinite bounded normal band matrix, the normal truncations on �2

n or �2⊥
n have a spectrum

closely related to the spectrum of the full matrix. This justifies the study of this kind of normal
truncations for C(a), which is the aim of Section 2. We find that all these truncations are indeed
unitary and can be parameterized by the points in T, leading to the para-orthogonal polynomials
[20] and to the family of Aleksandrov measures [16] related to the associated polynomials [23].

In Section 3 we use the unitary truncations of C(a) on �2⊥
n to obtain general relations between the

asymptotic behaviour of the Schur parameters and the location of {supp �}′.A well known result is
that, under the conditions limn an+1/an ∈ T, limn |an| ∈ (0, 1), which define the so-called López
class, {supp �}′ is a closed arc centred at − limn an+1/an with angular radius 2 arccos(limn |an|)
[2] (see also [26, Chapter 4] for an approach using the five-diagonal representation C(a)). It
is of interest to extend these results to a bigger class than the López one. With our techniques
we can get information about {supp �}′ when only one of the two López conditions is satisfied,
or, even, under the more general condition limn |an+1/an| = 1. Among other results, we prove
that, if limn |an+1/an| = 1, {supp �}′ lies inside the union of closed arcs with centre at the limit
points of the sequence (−an+1/an)n�1 and angular radius 2 arccos(limn |an|), which is a natural
generalization of the result for the López class.

Section 4 is devoted to the study of the approximation of supp � by means of the spectra of the
unitary truncations of C(a) on �2

n, which means the approximation of the spectrum of an infinite
unitary matrix by the spectra of finite unitary matrices. The proofs now include methods, not
only from operator theory, but also from the theory of analytical functions. We prove that, for
any measure � on T, there exist infinitely many sequences of unitary truncations whose spectra
exactly converge to supp �, in a strong sense that we will specify later on. This result proves a
conjecture formulated by L. Golinskii in [14], concerning the coincidence of the support of a
measure on T and the strong limit points of the zeros of the related para-orthogonal polynomials.
We also present some other results that deal with weaker notions of convergence of the finite
spectra, which are of interest in the following section.
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Finally, in Section 5, we consider an application of the previous results, that is, the study of the
convergence of rational approximants of the Carathéodory function of a measure on T. It is known
that the standard rational approximants constructed with the related orthogonal polynomials, or
their reversed ones, converge on C\D and D, respectively. We focus our analysis on the study of
the rational approximants related to the unitary truncations of C(a) on �2

n, that always converge
on C\T, and are just the rational approximants constructed with the para-orthogonal polynomials
[20]. The domain of convergence of these approximants is closely related to the asymptotic
behaviour of the finite spectra of the above unitary truncations. Therefore, the results of the
previous sections give information about the convergence of these approximants on T, where the
situation is more delicate. Some results in this direction for the standard rational approximants
can be found in [21].

2. Normal truncations of C(a)

In what follows, given a Hilbert space H, (·, ·) is the corresponding inner product and ‖ · ‖ the
related norm. We will deal with the setB(H) of bounded linear operators on H. ‖ · ‖ also denotes
the standard operator norm in B(H) while, for any operator T on H,

‖T ‖S := sup
x∈S\{0}

‖T x‖
‖x‖ , �(T ; S) := inf

x∈S\{0}
‖T x‖
‖x‖ , ∀S ⊂ H,

and �(T ) := �(T ; H). Given a sequence (Tn)n�1 of operators on H, Tn → T means that
limn ‖Tnx − T x‖ = 0, ∀x ∈ H (T is the strong limit of (Tn)n�1).

Let S be a subspace of H. If an operator T leaves S invariant, the operator on S defined by the
restriction of T to S is denoted by T�S . In particular, 0�S and 1�S are the null and identity operators
on S, respectively (the identity operator will be omitted when it is clear from the context). Also,
if T is an operator on S, we define an operator on H by T̂ := T ⊕ 0�S⊥ .

If T ∈ B(H), �(T ) is its spectrum and �e(T ) its essential spectrum. When T is normal it is
known that �(T ) = {z ∈ C : �(z − T ) = 0}. In fact, in this case, denoting by d(·, ·) the distance
between points and sets in C, we have �(z − T ) = d(z, �(T )) for any z ∈ C.

Let T ∈ B(H) and Q be a projection on S ⊂ H along S ′ ⊂ H . The operator T [Q] := QT�S
is called the truncation of T associated with Q, or the truncation of T on S along S′. T [Q] is finite
(co-finite) when S has finite dimension (co-dimension). If Q is an orthogonal projection we say
that T [Q] is an orthogonal truncation. To compare the operator with its truncation, it is convenient
to consider T̂ [Q] = T [Q]⊕0�S⊥ = QTP, where P is the orthogonal projection on S. Notice that,

if T [Q] is bounded (for example, this is the case of a finite truncation), ‖T̂ [Q]‖ = ‖T [Q]‖. Also,
T̂ [Q]∗ = T [Q]∗⊕0�S⊥ , so, any orthogonal truncation of a self-adjoint operator is self-adjoint too.
However, in general, to get normal truncations of a normal operator can require non-orthogonal
truncations.

In what follows, any infinite bounded matrix M is identified with the operator T ∈ B(�2) defined
by Tx = Mx, ∀x ∈ �2. T is called a band operator if M is a band matrix. The following result
shows the interest in finding normal finite and co-finite truncations of a normal band operator.

Proposition 2.1. Let T ∈ B(�2) be a normal band operator.

1. If Tn is a normal truncation of T on �2
n for n�1 and (‖Tn‖)n�1 is bounded, then T̂n → T and

�(T ) ⊂
{
z ∈ C : lim

n
d(z, �(Tn)) = 0

}
.
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2. For any bounded normal truncation Tn of T on �2⊥
n ,

�e(Tn) = �e(T ).

Proof. Let Tn be a normal truncation of T on �2
n. If T is a 2N + 1-band operator, T �2

n ⊂ �2
n+N

for n�1. Therefore, T̂nx = T x if x ∈ �2
n−N , n > N , and we get

‖T̂nx − T x‖�(‖Tn‖ + ‖T ‖)‖x − Pn−Nx‖, ∀n > N, ∀x ∈ �2.

Since Pn → 1 and (‖Tn‖)n�1 is bounded we find that T̂n → T .
If limn d(z, �(Tn)) > 0, there exist � > 0 and an infinite set I ⊂ N such that d(z, �(Tn))��,

∀n ∈ I. Since Tn is normal, �(z − Tn)��, ∀n ∈ I. Hence, if Pn is the orthogonal projection
on �2

n,

‖(zPn − T̂n)x‖ = ‖(z − Tn)Pnx‖��‖Pnx‖, ∀x ∈ �2, ∀n ∈ I. (5)

Taking limits in (5) we obtain ‖(z − T )x‖��‖x‖, ∀x ∈ �2, which, taking into account that T is
normal, implies that z /∈ �(T ). This proves 1.

As for the second statement, let Tn be a normal truncation of T on �2⊥
n . If T is 2N + 1-band,

T �2⊥
n ⊂ �2⊥

n−N for n > N . Hence, if n�1, T̂nx = Tx for x ∈ �2⊥
n+N , and, thus, rank (T − T̂n)�n+

N . Since T − T̂n has finite rank, Weyl’s theorem implies that �e(T ) = �e(T̂n) = �e(Tn). �

The first statement of the above proposition is the first step in establishing a numerical method
for the approximation of the spectrum of an infinite bounded normal band operator. This statement
will be improved in the case of finite normal truncations of C(a), getting an equality instead of
an inclusion (see Section 4), which can be used for the numerical approximation of the support
of the related measure on T.

The importance of the second assertion of Proposition 2.1 is that it can be used to extract prop-
erties of the essential spectrum of an infinite bounded normal band operator from the asymptotic
behaviour of the coefficients of its diagonals. When applying Proposition 2.1 to co-finite trunca-
tions of C(a), we can obtain properties of the derived set of the support of a measure on T from
the asymptotic behaviour of the related Schur parameters (see Section 3).

Our next step is to study the normal truncations of C(a) for an arbitrary sequence a in D. This
is equivalent to studying the normal truncations of U�, where � is the measure on T related to a.
Concerning this problem we have the following result.

Theorem 2.2. Let � be a measure on T with infinite support and Pm,n := span{zm, zm+1, . . . ,

zm+n−1}, m ∈ Z, n ∈ N. The normal truncations of U� on Pm,n (P⊥
m,n) are unitary, and they

are parameterized by the points in T. The normal truncation on Pm,n (P⊥
m,n) corresponding to a

parameter u ∈ T is U
�
m,n(u) := U�[Q�

m,n(u)], where Q
�
m,n(u) is the projection on Pm,n (P⊥

m,n)

along span{zmpu
n} ⊕ P⊥

m,n+1 (span{zmqu
n } ⊕ Pm+1,n−1), and

pu
n(z) := z�n−1(z) + u�∗

n−1(z), qu
n (z) := �∗

n(z) − u�n(z),
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(�n)n�0 being the orthonormal polynomials in L2
�. If (an)n�1 are the Schur parameters of �,

‖Q�
m,n(u)‖ =

√
1 + |u − an|2/�2

n.

The spectrum of the truncation U
�
m,n(u) on Pm,n is simple and coincides with the zeros of pu

n .

Proof. The problem can be reduced to the study of the normal truncations U
�
n = U�[Q�

n] of U�

on Pn := P0,n (P⊥
n ), since the normal truncations U

�
m,n = U�[Q�

m,n] on Pm,n (P⊥
m,n) are related

to the previous ones by Q
�
m,n = zmQ

�
nz−m and U

�
m,n = zmU

�
n z−m.

Let U
�
n be a truncation of U� on Pn. For any f ∈ Pn, the decomposition U

�
n f = z(f −

(f, �n−1)�n−1) + (f, �n−1)U
�
n �n−1 gives

U
�
n f = zf − (f, �n−1)pn, pn = z�n−1 − fn, fn = U

�
n �n−1. (6)

Thus, U
�
n = U�[Q�

n], Q
�
n being the projection on Pn along span{pn} ⊕ P⊥

n+1.
From (6), for an arbitrary f ∈ Pn, we get

U
�∗
n f = z−1(f − (f, �∗

n)�
∗
n) − (f, pn)�n−1,

and, therefore,

U
�
n U

�∗
n f = f − (f, �∗

n)�
∗
n − (f, z�n−1)z�n−1 + (f, fn)fn, (7)

U
�∗
n U

�
n f = f + (zf, fn)�n−1

+ (f, �n−1){z−1(fn − (fn, �
∗
n)�

∗
n) + (‖pn‖2 − 2)�n−1}. (8)

Let us suppose that U
�
n is normal, that is (U

�
n U

�∗
n − U

�∗
n U

�
n )f = 0 for any f ∈ Pn. Using (7)

and (8) we find that

(f, fn)fn = (zf, fn)�n−1, ∀f ∈ zPn−2.

If f ∈ zPn−2 is such that (f, fn) 
= 0, the above equality implies that fn is proportional to �n−1,
which gives a contradiction since �n−1⊥zPn−2. So, (f, fn) = (zf, fn) = 0 for any f ∈ zPn−2,
that is,

fn ∈ (zPn−2 + z2Pn−2)
⊥Pn = zP

⊥Pn

n−1 = span{�∗
n−1}.

Therefore, fn = −u�∗
n−1, u ∈ C. Then, if we take f = 1 in (7) and (8), the condition

(U
�
n U

�∗
n −U

�∗
n U

�
n )1 = 0 gives |u|2�∗

n−1 = �n�
∗
n −anz�n−1, and the reversed form of (3) shows

that u ∈ T.
Moreover, if fn = −u�∗

n−1, u ∈ T, we get from (7)

U
�
n U

�∗
n f − f = (f, �∗

n−1)(�
∗
n−1 − �n�

∗
n + anz�n−1) = 0,

and, hence, the finite truncation U
�
n is unitary.

Let us consider now a truncation U
�
n of U� on P⊥

n . The orthogonal decomposition P⊥
n =

z−1P⊥
n+1 ⊕ span{z−1�∗

n} gives, for any f ∈ P⊥
n , the equality U

�
n f = z(f − (f, z−1�∗

n)z
−1�∗

n)+
(f, z−1�∗

n)U
�
n z−1�∗

n, and, thus,

U
�
n f = zf − (zf , �∗

n)qn, qn = �∗
n − gn, gn = U

�
n z−1�∗

n. (9)

So, U
�
n = U�[Q�

n], Q
�
n being the projection on P⊥

n along span{qn} ⊕ zPn−1.
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From (9) we find that, for an arbitrary f ∈ P⊥
n ,

U
�∗
n f = z−1(f − (f, z�n−1)z�n−1) − (f, qn)z

−1�∗
n,

and

U
�
n U

�∗
n f = f − (f, �∗

n)�
∗
n − (f, z�n−1)z�n−1 + (f, gn)gn,

U
�∗
n U

�
n f = f + (z f , gn)z

−1�∗
n

+ (z f , �∗
n){z−1(gn − (gn, z�n−1)z�n−1) + (‖qn‖2 − 2)z−1�∗

n}.

When (U
�
n U

�∗
n − U

�∗
n U

�
n )f = 0 for any f ∈ P⊥

n , we find that

(f, gn)gn = (zf, gn)z
−1�∗

n, ∀f ∈ z−1P⊥
n+2,

and, in a similar way to the previous case, we obtain that

gn ∈ P
⊥(Pn+2∩z−1Pn+2)
n = P

⊥Pn+1
n = span{�n}.

Therefore, gn = u�n, u ∈ C, and (U
�
n U

�∗
n − U

�∗
n U

�
n )z−1�n+1 = 0 gives |u|2�n = �nz�n−1 +

an�∗
n. From (4) we conclude that u ∈ T.

Moreover, if gn = u�n, u ∈ T,

U
�
n U

�∗
n f − f = (f, �n)(�n − �nz�n−1 − an�

∗
n) = 0,

U
�∗
n U

�
n f − f = u�n(f, �n−1)z

−1�∗
n = 0,

which shows that U
�
n is unitary.

Notice that pn = �n�n + (u − an)�∗
n−1 and qn = �n�

∗
n−1 + (an − u)�n. Therefore,

Q
�
n�∗

n−1 = 	n�n, Q
�
n�n = 
n�

∗
n−1,

where 	n = 1, 
n = (an − u)/�n in the finite case and 	n = (u − an)/�n, 
n = 1 in the co-finite
case. In any of the two cases, Q

�
n�zPn−1

and Q
�
n�P⊥

n+1
are the unit or null operators. Since L2

� =
zPn−1⊕span{�∗

n−1, �n}⊕P⊥
n+1 we find that ‖Q�

n‖ = ‖Q�
n�span{�∗

n−1,�n}‖ = √
1 + |u − an|2/�2

n.

Finally, 1 is a cyclic vector for any finite normal truncation U
�
n since span{U�k

n 1}n−1
k=0 = Pn,

so, the spectrum of U
�
n is simple. The identity (6) implies that any eigenvalue of U

�
n is a zero of

pn, hence, the n different eigenvalues of U
�
n must fulfill the n (simple) zeros of pn. �

Remark 2.3. The polynomials pu
n and qu

n can be understood as the substitutes for �n�n and
�n�

∗
n−1, when changing an ∈ D by u ∈ T in the nth step of (3) and the reversed version of (4),

respectively. In fact, using (3) and (4) we see that these polynomials are related by

pu
n = u − an

�n

qv
n, qv

n = an − v

�n

pu
n, u = −v

1 − anv

1 − anv
, v = −u

1 − anu

1 − anu
. (10)

They are called para-orthogonal polynomials of order n associated with the measure � [20]. It was
known that they have simple zeros lying on T, which is in agreement with Theorem 2.2. Notice
that the freedom in the parameter u ∈ T means that we can arbitrarily fix in T one of the zeros
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of a para-orthogonal polynomial with given order, the rest of the zeros being determined by this
choice.

The importance of Theorem 2.2 is that it provides and, at the same time, closes the possible
ways of applying Proposition 2.1 to the unitary matrix C(a). We will identify any truncation of
C(a) on �2

n (�2⊥
n ) with its matrix representation with respect to {ek}k �n ({ek}k>n). The matrix

form of the normal truncations of C(a) can be obtained using the decomposition

C(a) = C(a1, . . . , an) ⊕ C(a(n); an), |an| = 1, a(n) := (an+j )j �1, (11)

where C(a1, . . . , an) is the principal matrix of C(a) of order n, and

C(a; u) :=
{

WC(ua)W ∗ even k,

(WC(ua)W ∗)t odd k,
W :=

⎛
⎜⎜⎜⎜⎝

w

w

w

w
.. .

⎞
⎟⎟⎟⎟⎠ (12)

with u = w2. The factorization C(a) = Co(a)Ce(a) is useful, where

Co(a) :=

⎛
⎜⎜⎝

�(a1)

�(a3)

�(a5)
. . .

⎞
⎟⎟⎠ ,

Ce(a) :=

⎛
⎜⎜⎝

1
�(a2)

�(a4)
. . .

⎞
⎟⎟⎠ , (13)

�(a) :=
(−a �

� a

)
, � :=

√
1 − |a|2, |a|�1.

Also, C(a1, . . . , an) = Co(a1, . . . , an)Ce(a1, . . . , an), where Co(a1, . . . , an) and Ce(a1, . . . , an)

are the principal submatrices of order n of Co(a) and Ce(a), respectively. All these properties hold
for |an|�1 [8].

If (�n)n�0 are the Laurent orthonormal polynomials related to a sequence a of Schur parameters,
we also have (see [7]){

(�n−1(z) �n(z) ) = (�n−1∗(z) �n∗(z) ) �(an) even n,

z (�n−1∗(z) �n∗(z) ) = (�n−1(z) �n(z) ) �(an) odd n.
(14)

Corollary 2.4. For any sequence a in D, the normal truncations of C(a) on �2
n and �2⊥

n are unitary
and they have, respectively, the form C(a1, . . . , an−1, u) and C(a(n); u), with u ∈ T. For both
kinds of truncations, the related projections Qn(a; u) satisfy ‖Qn(a; u)‖ = √

1 + |u − an|2/�2
n.

For any u ∈ T the spectrum of C(a1, . . . , an−1, u) is simple and coincides with the zeros of the
para-orthogonal polynomial pu

n associated with the measure related to a.

Proof. Let � be the measure on T whose sequence of Schur parameters is a, and let (�n)n�0
be the corresponding Laurent orthonormal polynomials. Since span{�0, . . . , �n−1} = Pm,n, m =
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−[n−1
2 ], the unitary equivalence between U� and C(a) implies that the normal truncations of

C(a) on �2
n (�2⊥

n ) are given by the matrix representations of the normal truncations of U� on
Pm,n (P⊥

m,n), when using the basis {�j }j<n ({�j }j �n). So, it just remains to prove that these
representations have the matrix form given in the corollary.

Let â be the sequence obtained from a when substituting an by u ∈ T. Property (11) implies
that C(â) = C(a1, . . . , an−1, u) ⊕ C(a(n); u). If � := C(a) − C(â) and � := (�n)n�0, (13) and
(14) lead to

�t�(z) = zm(bnp
u
n(z) + dnq

u
n (z)), bn ∈ �2

n, dn ∈ �2⊥
n .

Since C(a)t�(z) = z�(z), if �n := (�j )j<n and �(n) := (�j )j �n,

z�n(z) = C(a1, . . . , an−1, u)t�n(z) + 
nz
mpu

n(z), 
n ∈ Cn,

z�(n)(z) = C(a(n); u)t�(n)(z) + �nz
mqu

n (z), �n ∈ �2.

This shows that C(a1, . . . , an−1, u) (C(a(n); u)) is the matrix representation of the normal trun-
cation of U� on Pm,n (P⊥

m,n) along span{zmpu
n}⊕P⊥

m,n+1 (span{zmqu
n }⊕Pm+1,n−1) with respect

to �n (�(n)). �

Notice that the normal truncations provided by Theorem 2.2 and Corollary 2.4 are always
non-orthogonal. These truncations have a remarkable meaning. Concerning the finite ones, the
spectrum of the matrices C(a1, . . . , an, u), u ∈ T, provides the nodes of the Szegő quadrature
formulas [20] for the measure � corresponding to C(a). In fact, these matrices are the five-
diagonal representations of the unitary multiplication operators related to the finitely supported
measures �u,n associated with such quadrature formulas [8]. As for the co-finite truncations,
for any u ∈ T, the matrices C(a(n); u) are unitarily equivalent to C(ua(n)), which are the five-
diagonal representations corresponding to the family �(n)

u of Aleksandrov measures related to the
n-associated orthogonal polynomials.

When applied to the truncations of C(a) given in the previous corollary, Proposition 2.1 states
that {supp �}′ = {supp �(n)

u }′ for any u ∈ T, and supp � ⊂ {z ∈ C : limn d(z, supp �un,n) = 0}
for any sequence u = (un)n�1 in T. These relations were previously known (see [14, Theorem 8]
for the result concerning �u,n and [23,16,26,27] for results related to �(n)

u ). The relevance of our
approach is that it proves that the only possibility of applying Proposition 2.1 to C(a) necessarily
leads to the measures �u,n and �(n)

u .

3. Co-finite truncations of C(a) and the derived set of the support of the measure

If a is the sequence of Schur parameters for the measure � on T, our aim is to relate {supp �}′ =
�e(C(a)) and the asymptotic behaviour of a using Proposition 2.1.2 and some results of operator
theory. Concerning the notation, if T ∈ B(H) is normal, we denote by ET its spectral measure,
so that

(Tx, y) =
∫

C
�d(ET (�)x, y), ∀x, y ∈ H.

In fact, the above expression can be understood as an integral over �(T ).
As for the results of operator theory that we will apply, we start with a characterization of the

essential spectrum of a normal operator and a lower bound for the distance from a point to this
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essential spectrum. In what follows we use the notation D�(z) for an open disk of centre z ∈ C

and radius � > 0.

Proposition 3.1. Let T ∈ B(H) be normal. A point z ∈ C lies on �e(T ) if and only if �(z −
T ; S) = 0 for any subspace S ⊂ H with finite co-dimension. Moreover, given an arbitrary
subspace S ⊂ H with finite co-dimension, d(z, �e(T ))��(z − T ; S) for any z ∈ C.

Proof. A point z ∈ C belongs to �e(T ) if and only if rank ET (D�(z)) is infinite for any � > 0.
Therefore, if z /∈ �e(T ), S� := ET (C\D�(z))H is a subspace with finite co-dimension for some
� > 0. Moreover,

‖(z − T )x‖2 =
∫

C\D�(z)

|z − �|2 d(ET (�)x, x)��2‖x‖2, ∀x ∈ S�,

which proves that �(z − T ; S�)�� > 0.
If, on the contrary, z ∈ �e(T ), S′

� := ET (D�(z))H has infinite dimension for any � > 0 and,
thus, given a subspace S ⊂ H with finite co-dimension there always exists a non-null vector
x� ∈ S ∩ S′

�. Then,

‖(z − T )x�‖2 =
∫

D�(z)

|z − �|2 d(ET (�)x�, x�)��2‖x�‖2.

Since � is arbitrary, we conclude that �(z − T ; S) = 0. Moreover, given z ∈ C and a subspace
S ⊂ H with finite co-dimension,

�(z − T ; S)� |z − w| + �(w − T ; S) = |z − w|, ∀w ∈ �e(T ),

which proves that d(z, �e(T ))��(z − T ; S). �

Concerning perturbative results, if T0, T ∈ B(H) and T0 is normal, it is known that �(T ) ⊂
{z ∈ C : d(z, �(T0))�‖T − T0‖}. The next result is the analogue for the essential spectrum of
normal operators.

Proposition 3.2. If T0, T ∈ B(H) are normal, for any subspace S ⊂ H with finite co-dimension

�e(T ) ⊂ {z ∈ C : d(z, �e(T0))�‖T − T0‖S}.

Proof. Suppose that d(z, �e(T0)) > ‖T −T0‖S . Consider a real number � such that d(z, �e(T0)) >

� > ‖T − T0‖S . The subspace S� := ET0(C\D�(z))H has finite co-dimension and, similarly to
the proof of the previous proposition, �(z − T0; S�)��. S′

� := S ∩ S� has also finite co-dimension
and

�(z − T ; S′
�)��(z − T0; S′

�) − ‖(T − T0)‖S′
�
��(z − T0; S�) − ‖(T − T0)‖S.

Therefore, �(z − T ; S′
�)�� − ‖T − T0‖S > 0 and, from Proposition 3.1, z /∈ �e(T ). �

When applying to C(a) and its co-finite normal truncations C(a(n); u), u ∈ T, Propositions
2.1.2, 3.1 and 3.2 give the following result. For convenience, given an operator T ∈ B(�2), we
use the notation ‖T ‖n := ‖T ‖�2⊥

n
, �n(T ) := �(T ; �2⊥

n ), n�1, and ‖T ‖0 := ‖T ‖, �0(T ) := �(T ).
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Theorem 3.3. Let a be the sequence of Schur parameters of a measure � on T, b a sequence in
D, u ∈ T, m�0 and z ∈ C.

1. d(z, {supp �}′)� sup
n�0

�m(z − C(ua(n))).

2. inf
n�0

‖C(ua(n)) − C(b(n))‖m < d(z, �e(C(b))) ⇒ z /∈ {supp �}′.

Proof. From Proposition 2.1.2, �e(C(ua(n))) = �e(C(a)) = {supp �}′. So, a direct application
of Proposition 3.1 gives d(z, {supp �}′)��m(z − C(ua(n))) for any m, which proves the first
statement.

Let us suppose now that infn�0 ‖C(ua(n)) − C(b(n))‖m < d(z, �e(C(b))). Then, for some
n, ‖C(ua(n)) − C(b(n))‖m < d(z, �e(C(b))). Since Proposition 2.1.2 implies that �e(C(b)) =
�e(C(b(n))), it follows from Proposition 3.2 that z /∈ �e(C(ua(n))). Hence, using again Proposition
2.1.2, we find that z /∈ �e(C(a)) = {supp �}′. �

For the application of the preceding propositions we have to obtain lower bounds for �m(C(a)−
C(b)) and upper bounds for ‖C(a) − C(b)‖m, a and b being sequences in D. This is all we need
since C(b) = z for bn = (−z)n with z ∈ T. Notice that∥∥∥∥

(−	 


 	

) (
x

y

)∥∥∥∥ =
∥∥∥∥
(

	



)∥∥∥∥
∥∥∥∥
(

x

y

)∥∥∥∥ ,

(
	



)
,

(
x

y

)
∈ C2.

Hence, from the equality

C(a) − C(b) = (Co(a) − Co(b)) Ce(a) + Co(b)(Ce(a) − Ce(b)),

we get

�m(C(a) − C(b))� inf
j �m−1

odd (even) j

k(aj , bj ) − sup
j �m−1

even (odd) j

k(aj , bj ),

‖C(a) − C(b)‖m � sup
j �m−1

odd j

k(aj , bj ) + sup
j �m−1

even j

k(aj , bj ), (15)

where k(x1, x2) := �(�(x1) − �(x2)) = ‖�(x1) − �(x2)‖, that is,

k(x1, x2) =
√

|x1 − x2|2 + |y1 − y2|2, |xj |�1, yj :=
√

1 − |xj |2. (16)

Equipped with these results, we can apply Theorem 3.3 in different ways to get information
about the derived set of the support of a measure on T from the behaviour of the related Schur
parameters. The first example of this is the next theorem. In what follows, given z, w ∈ C,
w = eiz,  ∈ [0, 2�), we denote (z, w) := {ei�z : � ∈ (0, )}, [z, w] := {ei�z : � ∈ [0, ]}.
Also, for any z ∈ C and 	 ∈ [0, �], 	(z) := [ei	z, e−i	z], �	(z) := (e−i	z, ei	z) and �	(z) :=
[e−i	z, ei	z]. Besides, for any sequence a in C and any z ∈ C we define a(z) := (an(z))n�1 by
an(z) := znan.

Theorem 3.4. Let � be a measure on T with a sequence a of Schur parameters. Assume that for
some � ∈ T the limit points of the odd and even subsequences of a(−�) are separated by a band
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B(u, 	1, 	2) := {z ∈ C : cos 	2 < Re(uz) < cos 	1}, u ∈ T, 0�	1 < 	2 ��. Then,

{supp �}′ ⊂ 	(�), sin
	

2
= max

{
sin

	2

2
− sin

	1

2
, cos

	1

2
− cos

	2

2

}
.

Proof. Let b be defined by bn := (−�)n, � ∈ T. C(b(n)) is diagonal with diagonal elements
equal to �, except the first one that is (−1)n�n+1. Therefore, for m�1, �m(� − C(ua(n))) =
�m(C(b(n)) − C(ua(n))) and, from (15), we get

sup
n�0

�m(� − C(ua(n)))� sup
n�0

inf
odd (even) j
j �n+m−1

k(uaj , bj ) − inf
n�0

sup
odd (even) j
j �n+m−1

k(uaj , bj )

= lim
odd (even) n

√
2(1 − Re(uan(−�))) − lim

even (odd) n

√
2(1 − Re(uan(−�))).

Assume that the limit points of the even and odd subsequences of a(−�) are separated by the
band B(u, 	1, 	2). Then,

lim
even (odd) n

Re(uan(−�))� cos 	1, lim
odd (even) n

Re(uan(−�))� cos 	2,

which gives

sup
n�0

�m(� − C(ua(n)))�2 sin
	2

2
− 2 sin

	1

2
.

Since the limit points of the even and odd subsequences of a(−�) are separated by the band
B(−u, � − 	2, � − 	1) too, we also get

sup
n�0

�m(� − C(−ua(n)))�2 cos
	1

2
− 2 cos

	2

2
.

So, if we define 	 ∈ (0, �] by sin 	
2 = max{sin 	2

2 − sin 	1
2 , cos 	1

2 − cos 	2
2 }, Proposition 3.3.1

gives d(�, {supp �}′)�2 sin 	
2 , that is, {supp �}′ ⊂ 	(�). �

Given � ∈ T, the above theorem ensures that � /∈ {supp �}′ if the limit points of the odd and
even subsequences of a(−�) can be separated by a straight line. In particular, � /∈ {supp �}′ if the
limit points of a(�) lie on an open half-plane whose boundary contains the origin, because then,
the limit points of the odd and even subsequences of a(−�) are separated by the straight line that
limits such half-plane. In fact, we have the following immediate consequence of Theorem 3.4.

Corollary 3.5. Let � be a measure on T with a sequence a of Schur parameters. Assume that
for some � ∈ T the limit points of a(�) lie on D(u, 	0) := {z ∈ C : Re(uz)� cos 	0}, u ∈ T,
0�	0 < �/2. Then,

{supp �}′ ⊂ 	(�), cos
	

2
= √

sin 	0.

Proof. Under the assumptions of the corollary, the limit points of the odd and even subse-
quences of a(−�) are separated by the band B(u, 	0, � − 	0). So, the direct application of
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Theorem 3.4 proves that {supp �}′ ⊂ 	(�) with 	 ∈ (0, �] given by sin 	
2 = cos 	0

2 − sin 	0
2 , that

is, cos2 	
2 = sin 	0. �

Remark 3.6. If � is the measure related to the sequence a of Schur parameters, the measure
obtained by rotating � through an angle � is associated with the sequence a(ei�). Thus, Proposition
3.4 and Corollary 3.5 are just the rotated versions of the following basic statements:

1. If the limit points of the odd and even subsequences of a are separated by a band obtained by
a rotation of cos 	1 < Re(z) < cos 	2, then {supp �}′ ⊂ 	(−1) with sin 	

2 = max{sin 	2
2 −

sin 	1
2 , cos 	1

2 − cos 	2
2 }.

2. If the limit points of a lie on a domain obtained by a rotation of Re(z)� cos 	0 > 0, then
{supp �}′ ⊂ 	(1) with cos 	

2 = √
sin 	0.

Let us show an example of application of the previous results. In what follows we denote by
L{a} the set of limit points of a sequence a in C.

Example 3.7. L{a(�)} = {a, b}, � ∈ T, a 
= b, a, b 
= 0.
Let a be the Schur parameters of a measure � on T. With the help of the previous results we can

get information about the case in which we just know that a(�) has two different subsequential limit
points a, b, no matter from which subsequence. Suppose that 0 < |a|� |b| and let b−a

|b−a| = a
|a|e

i�,
� ∈ (−�, �]. Then, {a, b} ⊂ D(u, 	0) where

u = a

|a| , cos 	0 = |a|, if |�|� �

2
,

u = −sign(�)i
b − a

|b − a| , cos 	0 = |a| sin |�|, if |�| >
�

2
.

Therefore, using Corollary 3.5 we find that, if � 
= � (which means that b
|b| 
= − a

|a| ), {supp �}′ ⊂
	(�) with

cos
	

2
=

{
4
√

1 − |a|2 if |�|� �
2 ,

4
√

1 − |a|2 sin2 � if |�| > �
2 .

The next results use the second statement of Theorem 3.3. This requires the comparison of the
matrix C(a) related to a measure on T with another matrix C(b) with known essential spectrum.
The simplest case where the essential spectrum of C(b) is known is when it is a diagonal matrix,
which means that b is a sequence in T. Applying Theorem 3.3.2 to the comparison between C(a)

and C(b) with a suitable choice for b in T, we get the following result.

Proposition 3.8. Let an = |an|un (un ∈ T) be the Schur parameters of a measure � on T, and
assume that c(a) := min{c1(a), c2(a)} < 1, where

c1(a) := 1
2 lim

n

(‖an+1| − |an‖ + �n + �n+1
)
,

c2(a) := lim
odd n

√
1 − |an|

2
+ lim

even n

√
1 − |an|

2
.

Then,

{supp �}′ ⊂
⋃

�∈L{unun+1}
	(�), cos

	

2
= c(a).
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Proof. Let us define the sequence b by bn := un. Since un ∈ T, C(b) is the diagonal matrix

C(b) = −

⎛
⎜⎜⎝

u1
u1u2

u2u3
. . .

⎞
⎟⎟⎠ , (17)

and, hence, �e(C(b)) = −L{unun+1}. Using (15) we get

inf
n�0

‖C(a(n)) − C(b(n))‖�2c2(a).

We can find another upper bound for infn�0 ‖C(a(n)) − C(b(n))‖ in the following way. The
factorizations C(a) − C(b) = Co(a)(Ce(a) − C∗

o (a)C(b)) and Ce(a) − C∗
o (a)C(b) = A(a)B(b),

where

A(a) :=

⎛
⎜⎜⎜⎜⎝

1 − |a1| �1u1
�1u1 |a1| − |a2| �2u2

�2u2 |a2| − |a3| �3u3
�3u3 |a3| − |a4| �4u4

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠ ,

B(b) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
u2

u2
u4

u4
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

together with the fact that A(a) is unitarily equivalent (by a diagonal transformation) to the Jacobi
matrix

J (a) :=

⎛
⎜⎜⎜⎜⎝

1 − |a1| �1
�1 |a1| − |a2| �2

�2 |a2| − |a3| �3
�3 |a3| − |a4| �4

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠ ,

show that ‖C(a) − C(b)‖ = ‖J (a)‖.
Since J (a) is a bounded Jacobi matrix, it defines a self-adjoint operator on �2. So, it follows

from Proposition 2.2.1 that �(J (a)) ⊂ {z ∈ C : limn d(z, �(J (a1, . . . , an))) = 0}, where
J (a1, . . . , an) is the principal submatrix of J (a) of order n. A direct application of Gershgorin
theorem shows that

�(J (a1, . . . , an)) ⊂
{
z ∈ C : |z|� n

max
j=1

(‖aj−1| − |aj‖ + �j−1 + �j )

}
,

where a0 = 1 and �0 = 0. Therefore,

‖C(a) − C(b)‖ = ‖J (a)‖ = max
�∈�(J (a))

|�|� sup
j �0

(‖aj | − |aj+1‖ + �j + �j+1).
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Taking into account that |1 − |an+1‖ + �n+1 �‖an| − |an+1‖ + �n + �n+1, a similar reasoning
leads to

‖C(a(n)) − C(b(n))‖ = ‖J (a(n))‖� sup
j �n

(‖an| − |an+1‖ + �n + �n+1).

From this inequality we get

inf
n�0

‖C(a(n)) − C(b(n))‖�2c1(a).

Summarizing, infn�0 ‖C(a(n)) − C(b(n))‖�2c(a). Thus, Theorem 3.3 implies that a point
z ∈ T is outside {supp �}′ if d(z, −L{unun+1}) > 2c(a), which can be satisfied only if c(a) < 1.
In such a case we can write c(a) = cos 	

2 , 	 ∈ (0, �], and

{supp �}′ ⊂ {
z ∈ T : d(z, −L{unun+1})�2 cos 	

2

} =
⋃

�∈L{unun+1}
	(�). �

An immediate corollary of this proposition is a condition for the Schur parameters which ensures
that a certain arc of T is outside the derived set of the support of the measure.

Corollary 3.9. Under the conditions of Proposition 3.8,

L{unun+1} ⊂ ��(�), 0�� < 	 ⇒ {supp �}′ ⊂ 	−�(�).

A remarkable consequence of Proposition 3.8 is obtained when studying measures � in the
class limn |an+1/an| = l. Notice that l�1 because a is bounded. When l < 1, limn |an| = 0 and,
thus, supp � = T as a consequence of Weyl’s theorem, since, for bn = 0, C(a)−C(b) is compact.
So, concerning supp �, the only non-trivial case is l = 1.

The condition limn |an+1/an| = 1 covers the case limn |an| = 1, for which C(a) differs in a
compact perturbation from a diagonal matrix with diagonal elements −an−1an. Therefore, in this
case, {supp �}′ = −L{an+1/an} (see [13] for a similar argument using Hessenberg representa-
tions).

limn |an+1/an| = 1 is also verified when limn an = a ∈ D\{0}, which implies that C(a)−C(b)

is compact for bn = a. So, under this condition, {supp �}′ = 	(1), sin 	
2 = |a|, as in the

Geronimus case corresponding to constant Schur parameters equal to a [10,15]. A bigger class
is limn an+1/an = � ∈ T, limn |an| = r ∈ (0, 1), which is known as the López class [2]. It
is a particular case of limn |an+1/an| = 1 too. In the López class, C(a) is unitarily equivalent
to a matrix obtained by a compact perturbation of the matrix C(b) associated with the rotated
Geronimus case bn = �nr (see [26, Chapter 4]) and, therefore, {supp �}′ = 	(�), sin 	

2 = r .
All these results are known. We mention them to help understand to what extent the next theorem

is an extension of them. Notice that, not only the López class, but also the two conditions that
define this class are separately particular cases of limn |an+1/an| = 1.

Theorem 3.10. If a is the sequence of Schur parameters associated with a measure � on T,

lim
n

∣∣∣∣an+1

an

∣∣∣∣ = 1 ⇒ {supp �}′ ⊂
⋃

�∈L
{

an+1
an

} 	(�), sin
	

2
= lim

n
|an|.
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Proof. The result is trivial when limn |an| = 0, so we just have to consider the case limn |an| 
=
0. The result follows from Proposition 3.8, taking into account that, if limn |an+1/an| = 1 and
limn |an| 
= 0, c(a) = c1(a) = limn �n < 1 and L{unun+1} = L{an+1/an}. �

Notice that the bounds provided by Theorem 3.10 give the exact location of {supp �}′ for the
López class and also for the case limn |an| = 1. A direct consequence of this theorem is a result
for the class defined only by the first of the López conditions.

Corollary 3.11. If a is the sequence of Schur parameters associated with a measure � on T,

lim
n

an+1

an

= � ∈ T ⇒ {supp �}′ ⊂ 	(�), sin
	

2
= lim

n
|an|.

Theorem 3.10 can be used to supplement the conclusions of Theorem 3.4 and Corollary 3.5.
Let us see an example.

Example 3.12. L{a(�)} = {a, b}, � ∈ T, a 
= b, |a| = |b| 
= 0.
When a(�) has two different limit points a, b, using Corollary 3.5 we got information about an

arc centred at � which is free of {supp �}′. Theorem 3.10 helps us find other arcs outside {supp �}′
when |a| = |b| 
= 0 since, in this case, limn | an+1

an
| = 1.

Without loss of generality we can suppose b = aei�, � ∈ (0, �], so, L{ an+1
an

} ⊂ {�, �ei�, �e−i�}.
Hence, Theorem 3.10 gives three possible arcs lying on T\{supp �}′, centred at � and −�e±i

�
2 .

More precisely,

sin
�

2
< |a| ⇒ {supp �}′ ⊂ 	1(�), 	1 = 	 − �,

cos
�

4
< |a| ⇒ {supp �}′ ⊂ 	2(−�ei

�
2 ) ∩ 	2(−�e−i

�
2 ), 	2 = 	 + �

2
− �,

where 	 ∈ (0, �) is given by sin 	
2 = |a|.

Concerning Proposition 3.8, when limn(|an+1| − |an|) = 0, c(a) = c1(a) since �n <√
2(1 − |an|). On the contrary, c(a) = c2(a) if limn |a2n−1| = 1 or limn |a2n| = 1, due to

the inequality 1 − |an| +�n >
√

2(1 − |an|). So, in the last case, c(a) = limn

√
(1 − |an|)/2 and

we get the following corollary, which is a generalization of a result given in [13, p. 72].

Corollary 3.13. Let an = |an|un (un ∈ T) be the Schur parameters of a measure � on T. If
limn |a2n−1| = 1 or limn |a2n| = 1, then,

{supp �}′ ⊂
⋃

�∈L{unun+1}
	(�), cos 	 = − lim

n
|an|.

The rotated Geronimus case C(b), bn = �na, a ∈ D\{0}, � ∈ T, can also be used for the
comparison in Theorem 3.3, since we know that �e(C(b)) = 	(�), sin 	

2 = |a|. In fact, the
consequences of this comparison are a particularization of a more general result concerning the
comparison with the case b2n−1 = �2n−1ao, b2n = �2nae, where ao, ae ∈ D. In this case it is
known that �e(C(b)) = 	+(�) ∩ 	−(−�) where 	± ∈ [0, �] are given by

cos 	± = �o�e ∓ Re(aoae), �i :=
√

1 − |ai |2, i = o, e (18)
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(see [11,24]). That is, �e(C(b)) has two connected components except for the cases ao = ±ae
which correspond to only one connected component.

Proposition 3.14. Let a be the sequence of Schur parameters of a measure � on T and, for
ao, ae ∈ D and � ∈ T, let us define

s(a) := 1

2

{
lim
odd n

k(an(�), ao) + lim
even n

k(an(�), ae)

}
,

with k(·, ·) given in (16). Then, defining 	± as in (18),

s(a) < sin
	±
2

⇒ {supp �}′ ⊂ 	±−�(±�), sin
�

2
= s(a), 0�� < 	±.

Proof. Let us consider the sequence b2n−1 := �2n−1ao, b2n := �2nae. Using (15) we find that

inf
n�0

‖C(a(n)) − C(b(n))‖�2s(a).

When s(a) < sin 	±
2 we can write s(a) = sin �

2 , � ∈ [0, 	±), and, since �e(C(b)) = 	+(�) ∩
	−(−�), Theorem 3.3 implies that

{supp �}′ ⊂
{
z ∈ T : d(z, 	±(±�))�2 sin

�

2

}
= 	±−�(±�). �

Remark 3.15. With the notation of (16), from y2
1 − y2

2 = |x2|2 − |x1|2, we get

|y1 − y2|� |x1| + |x2|
y1 + y2

|x1 − x2|,

hence,

k(x1, x2)�
√

2(1 + |x1| |x2| + y1y2)

y1 + y2
|x1 − x2|� 2

y1 + y2
|x1 − x2|.

Therefore,

k(an(�), ai) <
2

�i

|an(�) − ai |,

and the conclusions of Proposition 3.14 hold if

1

�o
lim
odd n

|an(�) − ao| + 1

�e
lim

even n
|an(�) − ae| < sin

	±
2

.

Another subclass of limn |an+1/an| = 1 is given by the second López condition, limn |an| =
r ∈ (0, 1). In this subclass, Proposition 3.14 supplements Theorem 3.10 with the result that we
present below. Notice that limn |an| = r if and only if, for � ∈ T, the limit points of a(�) lie on the
circle {z ∈ C : |z| = r}. The key idea is that the knowledge of the arcs of this circle in which the
limit points of a(�) lie, gives information about the arc of T around � that is free of {supp �}′. We
will state a more general result that deals with the case limn |a2n−1(�)| = ro, limn |a2n(�)| = re.
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Theorem 3.16. Let a be the sequence of Schur parameters of a measure � on T. Assume that for
some � ∈ T the limit points of the odd and even subsequences of a(�) lie on ��o

(ao) and ��e
(ae),

respectively. Then, if 	± is given in (18),

s := |ao| sin
�o

2
+ |ae| sin

�e

2
< sin

	±
2

⇒ {supp �}′ ⊂ 	±−�(±�), sin
�

2
= s.

Proof. Since limn |a2n−1| = |ao| and limn |a2n| = |ae|,

s(a) = 1

2

{
lim
odd n

|an(�) − ao| + lim
even n

|an(�) − ae|
}

.

The statement follows from Proposition 3.14 and the fact that, when the limit points of (an(�))n�1
lie on ��(a),

lim
n

|an(�) − a|�2|a| sin
�

2
. �

Remark 3.17. The class limn |an| = r ∈ (0, 1) corresponds to the case |ao| = |ae| 
= 0, 1. Then,
{ao, ae} = {a, aei} with |a| = r and  ∈ [0, �], so, sin 	+

2 = r cos 
2 and sin 	−

2 = r sin 
2 .

Hence, in this case, the previous Theorem gives

� := sin
�o

2
+ sin

�e

2
<

{
cos 

2
sin 

2
⇒ {supp �}′ ⊂ 	±−�(±�), sin

�

2
= �r.

4. Finite truncations of C(a) and the support of the measure

Given an operator on an infinite-dimensional Hilbert space, the search for finite truncations
whose spectra asymptotically approach the spectrum of the full operator is an old and non-trivial
problem. For our purposes, the relevant question is, if, given a sequence a in D, there exist
sequences of finite truncations of the unitary matrix C(a) such that their spectra approximate
to the spectrum of C(a), that is, to the support of the related measure on T (for the analogous
problem concerning Jacobi matrices and measures on the real line see [3,5,19]). We will see that
the normal truncations of C(a) on �2

n give a positive answer to this question.
At this point we have to remember the definitions of limn, limn and limn for sequences of

subsets of C, in the sense of Hahn [17] or Kuratowski [22].

Definition 4.1. Given a sequence E = (En)n�1, En ⊂ C,

lim
n

En :=
{
� ∈ C : lim

n
d(�, En) = 0

}
,

lim
n

En :=
{
� ∈ C : lim

n
d(�, En) = 0

}
,

E = lim
n

En iff lim
n

En = E = lim
n

En.

The points in limn En are called the (weak) limit points of E, while the points in limn En are
called the strong limit points of E.

limn En and limn En are closed sets such that limn En ⊂ limn En. The points in limn En are
the limits of the convergent sequences (�n)n�1 with �n ∈ En, ∀n�1, while limn En contains the
strong limit points of all the subsequences of E. We have the following relations.
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Lemma 4.2. For any z ∈ C,

d
(
z, lim

n
En

)
= lim

n
d(z, En)� lim

n
d(z, En)�d

(
z, lim

n
En

)
.

Proof. If � ∈ limn En, there exists (�n)n�1, �n ∈ En, ∀n�1, such that � = limn �n. Therefore,
d(z, �) = limn d(z, �n)� limn d(z, En). Hence, d(z, limn En)� limn d(z, En).

A similar argument shows that d(z, limn En)� limn d(z, En). So, in the case limn d(z, En) =
∞ the relation is proved. Otherwise, let (En)n∈I be a subsequence of E such that limn d(z, En) =
limn∈I d(z, En). Then, limn d(z, En) = limn∈I d(z, �n), �n ∈ En, ∀n ∈ I. Since (�n)n∈I must
be bounded, it has a convergent subsequence (�n)n∈J . Therefore, � = limn∈J �n ∈ limn En and
d(z, limn En)�d(z, �) = limn d(z, En). �

Given a sequence (Tn)n�1 of truncations of an operator T, we are interested in the limit and
strong limit points of the related spectra, that is, limn �(Tn) and limn �(Tn). With this notation,
Proposition 2.1.1 says that, if T is a bounded normal band operator on �2 and (Tn)n�1 is a bounded
sequence of normal truncations of T, Tn being a truncation on �2

n, then �(T ) ⊂ limn �(Tn).
Concerning the relation between the limit points of the spectra for different sequences of

truncations, we have the following result.

Proposition 4.3. For n�1, let Tn, T ′
n be bounded truncations of a given operator on the same

subspace. If the truncations Tn are normal, then

lim
n

�(T ′
n) ⊂

{
z ∈ C : d

(
z, lim

n
�(Tn)

)
� lim

n
‖T ′

n − Tn‖
}

.

Proof. Let � ∈ limn �(T ′
n). There exists (�n)n∈I , I ⊂ N, with �n ∈ �(T ′

n), ∀n ∈ I, and � =
limn∈I �n. SinceTn is normal,d(�n, �(Tn))�‖T ′

n−Tn‖ and, so,d(�, �(Tn))� |�−�n|+‖T ′
n−Tn‖.

Therefore, using Lemma 4.2 we get d(�, limn �(Tn)) = limn d(�, �(Tn))� limn ‖T ′
n − Tn‖. �

Given a sequence a = (an)n�1 in D and a sequence u = (un)n�1 in T, we can consider the
corresponding sequence (C(a1, . . . , an−1, un))n�1 of finite unitary truncations of C(a). Our aim
is to study the relation between the limit and strong limit points of the spectra of these truncations
and the spectrum of C(a). The spectrum of C(a1, . . . , an−1, un) is the set of zeros of the para-
orthogonal polynomial p

un
n associated with the measure related to a. This means that, in fact, we

are going to study the connection between the support of a measure on T and the limit and strong
limit points of the zeros of sequences (p

un
n )n�1 of para-orthogonal polynomials associated with

this measure. Some previous results in this direction can be found in [6,14]. For convenience, in
what follows we use the notation

�n(a; u) := �(C(a1, . . . , an−1, un)) = {z ∈ C : pun
n (z) = 0},

for any sequence a in D and u in T. The results achieved till now have the following con-
sequences.

Theorem 4.4. If a is the sequence of Schur parameters associated with a measure � on T and u
is an arbitrary sequence in T,

supp � ⊂ lim
n

�n(a; u).
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Moreover, for any other sequence u′ in T,

lim
n

�n(a; u′) ⊂
{
z ∈ T : d

(
z, lim

n
�n(a; u)

)
� lim

n
|u′

n − un|
}

,

and, so,

lim
n

(u′
n − un) = 0 ⇒ lim

n
�n(a; u′) = lim

n
�n(a; u).

Proof. The first statement is a direct consequence of Proposition 2.1.1.
The second one follows from Proposition 4.3, taking into account that ‖C(a1, . . . , an−1, u

′
n)−

C(a1, . . . , an−1, un)‖ = |u′
n − un|, as can be easily proved using C(a1, . . . , an−1, un) = Co(a1,

. . . , an−1, un)Ce(a1, . . . , an−1, un). �

The fact that the strong limit points of the zeros of para-orthogonal polynomials include the
support of the orthogonality measure was already proved in [14, Theorem 8], which deals with
sequences of para-orthogonal polynomials with a fixed zero. We have obtained the result as a
particular case of a more general statement of operator theory. This result will be improved later
(see Theorems 4.17, 4.18 and Corollary 4.19) although we cannot always expect a strict equality
between those strong limit points and the support of the measure, due to the freedom in one of
the zeros for the para-orthogonal polynomials of a given order (see Remark 2.3).

Concerning the weak limit points of the zeros of para-orthogonal polynomials, it was also
shown in [14, Examples 9 and 10] that some of them can lie outside the support of the measure,
even if we fix for all the para-orthogonal polynomials a common zero inside the support of the
measure. However, we can get some information about the location of these limit points, which
will be useful for the study of the convergence of rational approximants for the Carathéodory
function of the measure (see Section 5). The next theorem is an example of this kind of results. If
there is a limit point outside the support of the measure, this theorem establishes how far it can
be from the derived set of this support. The proof, which follows the ideas of [19, Theorem 2.3]
relating to orthogonal truncations of self-adjoint operators, needs the following lemmas.

Lemma 4.5. Let T0, T ∈ B(H) be normal and such that T − T0 is compact. If Tn := T [Qn] is
a finite normal truncation of T for n�1 and T̂n → T ,

sup
�∈limn �(Tn)\�(T )

|� − z|� lim
n

‖Qn‖ sup
�∈�(T0)

|� − z|, ∀z ∈ C.

Proof. Let � ∈ limn �(Tn)\�(T ). Then, there exists (�n)n∈I , I ⊂ N, such that limn∈I �n = �
and �n is an eigenvalue of the finite truncation Tn. Let xn be a unitary eigenvector of Tn with
eigenvalue �n. Since Tn is normal, we can suppose that xn is also an eigenvector of T ∗

n with
eigenvalue �n. So, given an arbitrary y ∈ H ,

(xn, (� − T )y) = ((� − T̂ ∗
n )xn, y) + (xn, (T̂n − T )y),

which gives

|(xn, (� − T )y)|� |� − �n|‖y‖ + ‖(T̂n − T )y‖.
(xn)n∈I is bounded, thus, there exists a subsequence (xn)n∈J weakly converging to some x ∈ H .
Taking limits in the above inequality for n ∈ J we get ((� − T ∗)x, y) = 0, ∀y ∈ H , that is,
(� − T ∗)x = 0. Since T is normal and � /∈ �(T ), � is not an eigenvalue of T ∗, thus, x = 0.
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Let T0n := T0[Qn]. Then, for any z ∈ C, we can write

(� − z)xn = (T0n − z)xn + (Tn − T0n)xn + (� − �n)xn,

and, hence,

|� − z|�‖Qn‖‖T0 − z‖ + ‖Qn‖‖(T − T0)xn‖ + |� − �n|.
The fact that (xn)n∈J weakly converges to 0 and T − T0 is compact implies that limn∈J ‖(T −
T0)xn‖ = 0. We can suppose limn ‖Qn‖ < ∞, otherwise the inequality of the theorem is trivial.
Then, taking limits in the last inequality for n ∈ J we obtain

|� − z|� lim
n

‖Qn‖‖T0 − z‖.
T0 is normal, hence, ‖T0 − z‖ = sup�∈�(T0)

|� − z|. So, the theorem is proved since � was an
arbitrary point in limn �(Tn)\�(T ). �

The previous result for normal operators has the following consequence in the special case of
unitary operators.

Lemma 4.6. Let U be a unitary operator on H and Un := U [Qn] be a finite unitary truncation
of U for n�1 such that Ûn → U . Define 	0 ∈ [0, �] by

cos
	0

2
= lim

n

1

‖Qn‖ .

Then, if �e(U) ⊂ 	(w),

	 > 	0 ⇒ lim
n

�(Un)\�(U) ⊂ 
(w), cos



2
= cos 	

2

cos 	0
2

.

Proof. Let us suppose that �e(U) ⊂ 	(w). Then, for any � ∈ (0, 	), S� := EU(��(w))H has
finite dimension. Thus, the unitary operator

U � := U�S⊥
�

⊕ (−w1�S�)

differs from U in a finite rank perturbation and, so, U−U � is compact. Moreover, �(U �) ⊂ �(w).
Hence, Lemma 4.5 gives

sup
�∈limn �(Un)\�(U)

|� + w|� lim
n

‖Qn‖ sup
�∈�(U �)

|� + w|�2
cos �

2

cos 	0
2

, ∀� ∈ (0, 	).

If 	 > 	0, then
cos 	

2

cos 	0
2

= cos



2
, 
 ∈ (0, �]. Thus, from the above inequality,

sup
�∈limn �(Un)\�(U)

|� + w|�2 cos



2
,

which proves the result. �

Now we can get the announced result about the limit points of the zeros of para-orthogonal
polynomials.
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Theorem 4.7. Let a be the sequence of Schur parameters of a measure � on T, {�	j
(wj )}Nj=1

(N ∈ N ∪ {∞}) being the connected components of T\{supp �}′. Let u be a sequence in T and
define 	0 ∈ [0, �] by

cos
	0

2
= lim

n

1√
1 + |un−an|2

�2
n

.

Then, for any j = 1, . . . , N ,

	j > 	0 ⇒ lim
n

�n(a; u) ∩ �
j
(wj ) = supp � ∩ �
j

(wj ), cos

j

2
= cos

	j

2

cos 	0
2

.

Proof. Since supp � ⊂ limn �n(a; u) ⊂ limn �n(a; u), we just have to prove that limn �n(a; u)\
supp � ⊂ 
j

(wj ) for each j such that 	j > 	0. Remember that C(a1, . . . , an−1, u) is the unitary

truncation of C(a) on �2
n associated with the projection Qn(a; u) whose norm is given in Corollary

2.4. From Proposition 2.1.1, Ĉ(a1, . . . , an−1, u) → C(a). So, if 	j > 	0, a direct application of
Lemma 4.6 with U = C(a) and Qn = Qn(a; un) gives limn �n(a; u)\supp � ⊂ 
j

(wj ). �

The previous theorem says that limn �n(a; u) can differ from supp � only in �	j
(wj )\�
j

(wj )

if 	j > 	0, or in �	j
(wj ) if 	j �	0.

If an 
= 0 for any n big enough, the best choice for the sequence u in Theorem 4.7 is un = an|an| .
Then,

cos 	0 = lim
n

|an|,

so, 	0 � �
2 . Taking into account Theorem 4.4, Theorem 4.7 also works with the above value of 	0 if

limn(un − an|an| ) = 0. In particular, if limn |an| = 1 we can choose u such that limn(un − an) = 0,

which gives 	0 = 0 and, hence, supp � = limn �n(a; u) = limn �n(a; u). So we get the following
consequence of Theorem 4.7.

Corollary 4.8. If a is the sequence of Schur parameters associated with a measure � on T and
u is a sequence in T,

lim
n

(un − an) = 0 ⇒ lim
n

�n(a; u) = supp �.

As we pointed out, {supp �}′ = −L{an+1/an} when limn |an| = 1, so, if limn(un − an) = 0,
limn �n(a; u) coincides with −L{an+1/an} plus, at most, a countable set that can accumulate
only on −L{an+1/an}.

Example 4.9. Rotated asymptotically 2-periodic Schur parameters.

Let us suppose that limn a2n−1(�) = ao and limn a2n(�) = ae for some � ∈ T. We know
that T\{supp �}′ = �	+(�) ∪ �	−(−�) where 	± is given in (18). If un = an|an| , then cos 	0 =
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min{|ao|, |ae|} and

	± > 	0 ⇔ �o�e ∓ Re(aoae) < min{|ao|, |ae|}.

Under these conditions, limn �n(a; u) ∩ �
±(±�) = supp � ∩ �
±(±�) where

cos

±
2

=
√

1 + �o�e ∓ Re(aoae)

1 + min{|ao|, |ae|} .

Example 4.10. L{a(�)} = {a, b}, � ∈ T, a 
= b, |a| = |b| 
= 0.

Following Example 3.12, we can suppose b = aei�, � ∈ (0, �], and, then

�	1(�) ⊂ T\{supp �}′, 	1 = 	 − �, if sin
�

2
< |a|,

�	2(−�e±i
�
2 ) ⊂ T\{supp �}′, 	2 = 	 + �

2
− �, if cos

�

4
< |a|,

where 	 ∈ (0, �) is given by sin 	
2 = |a|. Let un = an|an| , so that cos 	0 = |a|, that is, 	0 = 	 − �0

with

sin
�0

2
= (2|a| − 1)

√
1 + |a|

2
, −�

2
< �0 < �.

Hence, we get

	1 > 	0 ⇔ � < �0 ⇔ sin
�

2
< (2|a| − 1)

√
1 + |a|

2
,

	2 > 	0 ⇔ � − �

2
< �0 ⇔ cos

�

4
< (2|a| − 1)

√
1 + |a|

2
.

Under each of these conditions, limn �n(a; u) ∩ �
1
(�) = supp � ∩ �
1

(�) and limn �n(a; u) ∩
�
2

(−�e±i
�
2 ) = supp � ∩ �
2

(−�e±i
�
2 ), respectively, where

cos

1

2
= |a| sin �

2 + � cos �
2√

1+|a|
2

, cos

2

2
= |a| cos �

4 + � sin �
4√

1+|a|
2

,

being � = √
1 − |a|2.

We can go further in the analysis of limn �n(a; u) and limn �n(a; u) using the analytic properties
of the para-orthogonal polynomials. The following result for the corresponding zeros was proved
in [6,14].

Theorem A (Cantero et al. [6, Corollary 2] and Golinskii [14, Theorem 2]). Given a measure
� on T, the closure � of any arc � ⊂ T\supp � contains at most one zero of the para-orthogonal
polynomial pu

n related to � for any u ∈ T and n ∈ N.
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With this property and Theorem 4.4 we can achieve the following result.

Theorem 4.11. Let � be a measure on T with a sequence a of Schur parameters, and let u be a
sequence in T. Consider a connected component � of T\{supp �}′ and w ∈ �.

1. w ∈ �n(a; u)∀n�1 ⇒ lim
n

�n(a; u) ∩ � = (supp � ∩ �) ∪ {w}.
2. w ∈ lim

n
�n(a; u)\supp � ⇒ lim

n
�n(a; u) ∩ � = (supp � ∩ �) ∪ {w}.

Proof. � ∩ supp � is at most a countable set which can accumulate only at the endpoints of
�. Consider one of the two connected components of �\{w}, let us say �+ = (w, w+). Let
�+\supp � = (w, w1) ∪ (w1, w2) ∪ · · · be the decomposition in connected components. From
Theorem A, it is clear that (wj , wj+1) has, at most, one point in �n(a; u) for each j, n�1.

Assume that w ∈ �n(a; u), ∀n�1. Then, Theorem A implies that (w, w1) ∩ �n(a; u) = ∅,
∀n�1. Hence, for j �1, since wj ∈ supp � ⊂ limn �n(a; u), it is necessary that (wj , wj+1) ∩
�n(a; u) = {�(n)

j } for n greater than certain index nj , and limn �(n)
j = wj . So, we conclude that

�+ ∩ limn �n(a; u) = {w1, w2, . . .} = �+ ∩ supp �. A similar analysis for the other connected
component of �\{w} finally gives � ∩ limn �n(a; u) = (� ∩ supp �) ∪ {w}.

Let us suppose now that w ∈ limn �n(a; u)\supp �. Let �− = (w−, w) be the other connected
component of �\{w}, �−\supp � = (w−1, w0) ∪ (w−2, w−1) ∪ · · · being the decomposition in
connected components. From Theorem A and the condition for w we conclude that (w−1, w1) ∩
�n(a; u) = {�(n)

0 } for n greater than certain index n0, and limn �(n)
0 = w. From here on, similar

arguments to the previous case prove that � ∩ limn �n(a; u) = (� ∩ supp �) ∪ {w}. �

Theorem 4.11 says that, if we choose a sequence of para-orthogonal polynomials with a fixed
zero w outside {supp �}′, or with a zero converging to a point w outside supp �, then, in the
connected component of T\{supp �}′ where w lies, the limit points of the zeros of the para-
orthogonal polynomials coincide with supp � up to, at most, the point w.

Remark 4.12. The above result can be read as a statement about the zeros of the para-orthogonal
polynomials p

un
n (z) = z�n−1(z) + un�∗

n−1(z). The requirement for fixing a common zero w

for all these polynomials means that we have to choose un = −w�n−1(w)/�∗
n−1(w) for n�1.

However, if we consider Theorem 4.11 as a result about the eigenvalues of the unitary matrices
C(a1, . . . , an−1, un), the interesting question is: how to get from the sequence a of Schur param-
eters the sequence u = uw that fixes a common zero w for all the polynomials p

un
n ? Since the

polynomial p
un
n is proportional to q

vn
n = �∗

n − vn�n with vn = −un
1−anun

1−anun
(see Remark 2.3), we

find that such a sequence u = uw must satisfy un+1vn = −w and, thus,

uw
1 = −w,

uw
n+1 = wuw

n

1 − anu
w
n

1 − anuw
n

, ∀n�1. (19)

This recurrence answers the question.

Corollary 4.8 stated that, for the family of measures whose Schur parameters approach to the
unit circle, it is possible to choose a sequence of para-orthogonal polynomials whose zeros exactly
converge to the support of the measure. Theorem 4.11 gives another class of measures where this
essentially happens, as the following corollary shows.
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Corollary 4.13. Let � be a measure on T with a sequence a of Schur parameters, and let u be a
sequence in T. Assume that {supp �}′ is connected.

1. w ∈ �n(a; u)\{supp �}′∀n�1 ⇒ lim
n

�n(a; u) = supp � ∪ {w}.
2. w ∈ lim

n
�n(a; u)\supp � ⇒ lim

n
�n(a; u) = supp � ∪ {w}.

The results of Section 3 provide very general situations where Theorem 4.11 can be applied.
Concerning the more stringent result of Corollary 4.13, the following example gives a remarkable
situation where it holds.

Example 4.14. The López class.
If limn

an+1
an

= � ∈ T and limn |an| = r ∈ (0, 1), we know that {supp �}′ = 	(�) with
	 ∈ (0, �) given by sin 	

2 = r . Therefore, for any w ∈ �	(�), limn �n(a; uw) = supp � ∪ {w}.

Theorem 4.11.2 has a consequence about the strong limit points of the zeros of para-orthogonal
polynomials. It implies that limn �n(a; u) can differ from supp � in, at most, one point in each
connected component of T\{supp �}′. This result will be improved in Theorems 4.17, 4.18 and
Corollary 4.19, which use some results of [21]. In this work, S. Khrushchev defines the so-called
class of Markoff measures on the unit circle (Mar(T)), which includes, as a particular case, all
the measures whose support does not cover the unit circle [21, p. 268]. For a measure � in this
class he proves some results that give information about the asymptotics of �n/�

∗
n in T\supp �,

(�n)n�0 being the orthonormal polynomials in L2
�. As we will see, this is a key tool to control the

strong limit points of the zeros of the para-orthogonal polynomials. Let us summarize the referred
results in [21].

Theorem B (Khrushchev [21, Lemma 8.4.1]). Let � ∈ Mar(T). Then there exists a positive
number �(�) such that

sup
|z|�1/2

∣∣∣∣�n(z)

�∗
n(z)

∣∣∣∣ > �(�) > 0, ∀n�1.

Theorem C (Khrushchev [21, Corollary 8.6]). Let B be a Blaschke product with zeros {zj } such
that |B(z0)| > � > 0 for some z0, |z0|�1/2. If |z − zj |�� > 0, then |B(z)| > c = c(�, �) > 0.

The interest of this last result is that �n/�
∗
n is always a Blaschke product. With the above

tools we get a result for the asymptotic behaviour of the sequence (�∗
n/�n)n�0 on C\Co(supp �),

where Co(E) means the convex hull of E ⊂ C.

Proposition 4.15. Let � be a measure on T and let gn := �∗
n/�n for n�0, (�n)n�0 being the

orthonormal polynomials in L2
�. Then, any subsequence of (gn)n�0 has a subsequence which

uniformly converges on compact subsets of C\Co(supp �).

Proof. Let us suppose first that supp � 
= T, and let K be a compact subset of C\Co(supp �). Since
Co(supp �) is also compact, the distance between K and Co(supp �) must be a positive number �.
The zeros {z(n)

j }nj=1 of the polynomial �n lie on Co(supp �), so, |z − z
(n)
j |�� > 0, j = 1, . . . , n,

for all z ∈ K and n ∈ N. Therefore, Theorems B and C imply that |1/gn(z)| > c(�(�), �) > 0,
∀z ∈ K, ∀n ∈ N, and, thus, (gn)n�0 is uniformly bounded on K. That is, (gn)n�0 is uniformly
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bounded on any compact subset of C\Co(supp �). This is also true for the case supp � = T since
|gn(z)|�1 for |z|�1. Therefore, (gn)n�0 is always a normal family in C\Co(supp �), which
proves the proposition. �

Now we are ready to prove the main results about the strong limit points of the zeros of
para-orthogonal polynomials. The following set will be important in the next discussions.

Definition 4.16. Given a sequence E = (En)n�1, En ⊂ C, we define limn En as the set of
points � ∈ C such that, for some infinite set I ⊂ N,

lim
n∈I

d(�, En) = lim
n∈I

d(�, En+1) = 0.

We call limn En the set of double limit points of the sequence E.

Obviously, limn En is a closed set such that limn En ⊂ limn En ⊂ limn En.

Theorem 4.17. Let a be the sequence of Schur parameters of a measure � on T and let u be a
sequence in T. Then, limn �n(a; u) coincides with supp � except, at most, at one point. If this

point exists, limn �n(a; u) = limn �n(a; u) and, thus, limn �n(a; u) equals supp � up to such a
point.

Proof. It is enough to prove that the conditions w ∈ limn �n(a; u)\supp � and z ∈ limn �n(a; u)\
supp � imply z = w. Let w ∈ limn �n(a; u) and z ∈ limn �n(a; u). There exist two sequences
(wn)n�1 and (zn)n�1 with wn, zn ∈ �n(a; u), ∀n�1, such that limn wn = w and limn∈I zn =
limn∈I zn+1 = z for some infinite set I ⊂ N. Let � be the measure whose sequence of Schur
parameters is a, and let gn = �∗

n/�n for n�0, (�n)n�0 being the orthonormal polynomials in
L2

�. Since wn and zn are zeros of the same para-orthogonal polynomial p
un
n , we get

zn+1gn(zn+1) = wn+1gn(wn+1), n�0. (20)

Taking into account that p
un
n is proportional to q

vn
n = �∗

n − vn�n for some vn ∈ T (see Remark
2.3), we also find that

gn(zn) = gn(wn), n�1. (21)

Assume that w, z /∈ supp � and let K be a compact subset of T\supp � containing two open
arcs centred at w and z, respectively. wn, zn ∈ K for any n big enough. On the other hand,
Proposition 4.15 ensures the uniform convergence on K of a subsequence (gn)n∈J , J ⊂ I.
If g is the uniform limit of this subsequence, limn∈J gn(wn) = limn∈J gn(wn+1) = g(w) and
limn∈J gn(zn) = limn∈J gn(zn+1) = g(z). Taking limits for n ∈ J in (20) and (21) we conclude
that z = w since g(z) 
= 0 (in fact, |g(z)| = 1). �

It is clear that we can control the possible strong limit point of the zeros that lies outside the
support of the measure choosing a sequence of para-orthogonal polynomials with a fixed zero
outside this support. More surprising is that the choice of a fixed zero in the support always
gives an exact equality between the strong limit points and the support of the measure. This
is a consequence of the next theorem, which delimits the possible double limit points outside
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the support of the measure. In fact, it provides for any measure sequences of para-orthogonal
polynomials that ensure the strict equality between the double limit points of the zeros and the
support of the measure.

Theorem 4.18. If a is the sequence of Schur parameters of a measure � on T and u is a sequence
in T,

lim
n

�n(a; u)\supp � ⊂ L

{
un+1

un

1 − anun

1 − anun

}
.

Proof. Let z ∈ limn �n(a; u). There exists a sequence (zn)n�1 such that zn ∈ �n(a; u), ∀n�1,
and limn∈I zn = limn∈I zn+1 = z for some infinite set I ⊂ N. Since zn is a zero of p

un
n and q

vn
n

with vn = −un
1−anun

1−anun
(see Remark 2.3), we find that un+1 = −zn+1gn(zn+1) and vn = gn(zn)

for n�1, which gives

un+1

un

1 − anun

1 − anun

= zn+1
gn(zn)

gn(zn+1)
, n�1. (22)

Let us suppose that z /∈ supp �. Using again Proposition 4.15 we find that a subsequence
(gn)n∈J , J ⊂ I, uniformly converges to a function g on a compact subset of T\supp � containing
an open arc centred at z. Hence, limn∈J gn(zn) = limn∈J gn(zn+1) = g(z) and, taking limits

for n ∈ J in (22), it follows that z ∈ L
{

un+1
un

1−anun

1−anun

}
. �

As a first consequence of the previous theorem we find infinitely many sequences of para-
orthogonal polynomials (p

un
n )n�1, the double limit points of whose zeros coincide exactly with

supp �. They are those defined by sequences u such that L
{

un+1
un

1−anun

1−anun

}
⊂ supp �.

An interesting choice for u is given by the phases of a, that is, un = an|an| if an 
= 0 and un

arbitrarily chosen in T otherwise. Then, the previous theorem states that limn �n(a; u)\supp � ⊂
L{unun+1}.

If we are interested in locating the possible strong limit point outside supp � at a certain place

w ∈ T, we can choose u so that limn
un+1
un

1−anun

1−anun
= w. Then, limn �n(a; u) ⊂ supp � ∪ {w}. So,

if w ∈ supp �, limn �n(a; u) = supp �.

A particular choice of u which ensures limn �n(a; u) ⊂ supp �∪{w} is given by the recurrence

un+1 = wun

1 − anun

1 − anun

, n�1 (23)

with an initial condition u1 = u, u an arbitrary point in T. Let us study the form of the related
para-orthogonal polynomials p

un
n .

Without loss of generality we write un = −wrn−1(w)/r∗
n−1(w), with rn a polynomial of de-

gree n. Eq. (23) is equivalent to rn(w)/r∗
n(w) = sn(w)/s∗

n(w), sn(w) = wrn−1(w)+ anr
∗
n−1(w).

So, rn(w) = �n(wrn−1(w) + anr
∗
n−1(w)), �n ∈ R\{0}. This equation has two independent solu-

tions: (�n�n(w))n�0, (i�n�n(w))n�0, where �n = �1�1 · · · �n�n, (�n)n�0 are the orthonormal
polynomials related to the Schur parameters a, and (�n)n�0 are the orthonormal second kind
polynomials, associated with the Schur parameters −a [28,12].

Therefore, the sequence u satisfies (23) if and only if p
un
n (z) is proportional to p∗

n−1(w)z�n−1(z)

− wpn−1(w)�∗
n−1(z), where pn = c1�n + ic2�n, (c1, c2) ∈ R2\{(0, 0)}. Since �npn(w) =
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wpn−1(w)+anp
∗
n−1(w), this is equivalent to saying that p

un
n (z) is proportional to p∗

n(w)�n(z)−
pn(w)�∗

n(z). Notice that the initial condition u = −w means that p0 is real, which corresponds
to the case c2 = 0, giving the sequence of para-orthogonal polynomials with a fixed zero at w

studied in Remark 4.12.
Summarizing, as a consequence of Theorem 4.18 we obtain the following result.

Corollary 4.19. Let � be a measure on T, (�n)n�0 be the orthonormal polynomials in L2
� and

(�n)n�0 be the related orthonormal second kind polynomials. Any sequence (Pn)n�1 of para-
orthogonal polynomials given by

Pn(z) := p∗
n(w)�n(z) − pn(w)�∗

n(z),

pn := c1�n + ic2�n, (c1, c2) ∈ R2\{(0, 0)}, w ∈ T,

has the property that the double limit points of the corresponding zeros coincide with supp �
except, at most, at the point w. Hence, if w ∈ supp �, the double limit points of the zeros exactly
coincide with supp �. When c2 = 0, all the para-orthogonal polynomials have a common zero at
w and the double and strong limit points coincide with supp � ∪ {w}.

The para-orthogonal polynomials (Pn)n�1 given in the previous corollary appeared previously
in [6], where it was proved that they have other interesting properties concerning the interlacing
of zeros: for all n, Pn and Pn+1 have interlacing zeros in T\{w} [6, Theorem 1].

In [14], L. Golinskii conjectured that the strong limit points (which he called the strong attracting
points) of the zeros of para-orthogonal polynomials with a fixed zero lying on the support of
the measure, must coincide with this support. Theorems 4.17, 4.18 and Corollary 4.19, not only
confirm this conjecture, but go even further in two senses: the achieved results cover any sequence
of para-orthogonal polynomials, not only the case of a fixed zero on the support of the measure;
even in this case, the results are stronger than the one conjectured by L. Golinskii since we have
proved the equality between the support of the measure and the double limit points of the zeros of
the para-orthogonal polynomials. Concerning related results for orthogonal polynomials on the
real line see [9].

The previous results give a method for approximating the support of a measure � on the unit
circle starting from its sequence a of Schur parameters, based on the computation of the eigenvalues
of the finite unitary matrices C(a1, . . . , an−1, un) for a sequence u in T. A recommendable choice
is the sequence u = uw given in (19) that fixes a common eigenvalue w for all the finite matrices,
because it permits us to control the only possible strong limit point that, according to Theorem
4.17, can lie outside supp �. In this case Theorem 4.18 proves that the double limit points coincide
with supp �∪ {w}, so the computation of the eigenvalues for pairs of consecutive matrices can be
used to eliminate those weak limit points that are spurious points of supp �.

The following figures show some examples of the previous method of approximation. They
represent �n(a; u) for some choices of a, u and n = 1000, 1001. The computations have been
made applying the double precision routines of MATLAB to the calculation of the eigenvalues
of C(a1, . . . , an−1, un). We have to remark that the computations can be also made using a Hes-
senberg matrix unitarily equivalent to C(a1, . . . , an−1, un) [1,8]. However, although the time of
computation of eigenvalues is only a little smaller with the five-diagonal representation (using the
standard routines), the computational cost of building the matrix is much bigger in the Hessenberg
case, growing very much faster as n increases.
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Fig. 1. �n(a; u1) for an = 1
2 .
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Fig. 2. �n(a; u−1) for an = 1
2 .

The first three figures correspond to different choices of u in the case of constant Schur parame-
ters an = 1

2 , where supp � =  �
3
(1). Corollary 4.13 proves that limn �n(a; u1) = supp �∪{1}, as

can be seen in Fig. 1.According to Corollary 4.19, limn �n(a; u−1) = supp �. This is in agreement
with Fig. 2, where we see that limn �2n−1(a; u−1) = supp � but limn �2n(a; u−1) = supp �∪{1},
so, 1 is a weak but not a double limit point. Such behaviour was predicted by L. Golinskii in [14,
Example 10]. As we have seen throughout the paper, another interesting choice is un = an/|an|
which, used in Fig. 3, seems to give limn �n(a; u) = supp �, although Theorem 4.18 says that

limn �n(a; u) could differ from supp � in (at most) the point 1.
The next three figures deal with the 2-periodic Schur parameters a2n−1 = 1

4 , a2n = 3
4 , whose

measure satisfies {supp �}′ = 	+(1) ∩ 	−(−1) with 	+ ≈ 0.35� and 	− ≈ 0.19�. According

to those figures there are no isolated mass points. From Corollary 4.19, limn �n(a; u1) = supp � ∪
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Fig. 3. �n(a; u) for an = 1
2 and un = an|an| .
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Fig. 4. �n(a; u1) for a2n−1 = 1
4 and a2n = 3

4 .

{1}, while Theorem 4.11 states that, apart from the point 1, there cannot be weak limit points in the
gap around 1. These results agree with Fig. 4 which shows that, in this case, −1 is the only weak
limit point that is not a double limit point. The choice u = ui fixes a common eigenvalue at supp �

and, thus, Corollary 4.19 implies that limn �n(a; ui ) = supp �. This is the situation represented

in Fig. 5. Fig. 6 seems to indicate that, as in the case an = 1
2 , limn �n(a; u) = supp � also for

un = an/|an|, where Theorem 4.18 only predicts that limn �n(a; u) ⊂ supp � ∪ {1}. However,
contrary to the case of constant Schur parameters, a weak limit point, −1, appears now outside
supp �.

It is interesting to compare the first example, an = 1
2 , with the situation of a random se-

quence a lying on Re(z)� 1
2 . Fig. 7, which represents this last case for u = u−1, agrees with

Corollary 3.5, which predicts that {supp �}′ ⊂ 	(1), 	 ≈ 0.24�.
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Fig. 5. �n(a; ui ) for a2n−1 = 1
4 and a2n = 3

4 .
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Fig. 6. �n(a; u) for a2n−1 = 1
4 , a2n = 3

4 and un = an|an| .

The second example of 2-periodic Schur parameters, a2n−1 = 1
4 , a2n = 3

4 , can be compared
with Figs. 8 and 9. Fig. 8 deals with the choice u = u1 for a sequence a whose odd and even
subsequences are randomly located on Re(z)� 1

4 and Re(z)� 3
4 , respectively. This figure confirms

Theorem 3.4, which implies that {supp �}′ ⊂ 	(−1), 	 = �
6 . In Fig. 9 the odd subsequence of a

is randomly chosen on the semicircle � �
2
( 1

4 ) and a2n = 3
4 with u = ui . The figure is compatible

with Theorems 3.16 and 3.4 which give {supp �}′ ⊂ 	(−1) ∩ 
(1), 	 = �
6 , 
 ≈ 0.24�.

Finally, Figs. 10–12 correspond to different sequences of Schur parameters having two different
limit points re±i �

3 with equal modulus r = sin( 3�
8 ). In Figs. 10 and 11, the subsequences of a

converging to such limit points are chosen so that (an+1/an)n�1 has three limit points 1, e±i 2�
3 .

Then, Theorem 3.10 predicts that {supp �}′ is included in three arcs centred at −1, e±i �
3 with
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Fig. 7. �n(a; u−1) for an randomly distributed on Re(z)� 1
2 .
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Fig. 8. �n(a; u1) for a2n−1 and a2n randomly distributed on Re(z)� 1
4 and Re(z)� 3

4 , respectively.

angular radius �
4 . As Example 3.12 shows, this means that {supp �}′ has at least three gaps centred

at 1 and e±i 2�
3 with an angular radius greater than or equal to 	 = �

12 . In fact, from Example 3.7
we see that Corollary 3.5 ensures that the radius of the gap around 1 is not less than 
 ≈ 0.22�

and, hence, {supp �}′ ⊂ 	(e
i 2�

3 ) ∩ 	(e
−i 2�

3 ) ∩ 
(1). This result agrees with Figs. 10 and 11.
The comparison with Fig. 12 is of interest. It represents the case of 2-periodic Schur parameters
with the same limit points as in Figs. 10 and 11. In this case (an+1/an)n�1 has only two limit

points e±i 2�
3 , hence, the arc around −1 is now free of {supp �}′. In fact, we know that {supp �}′ =

	−(−1) ∩ 	+(1) with 	− ≈ 0.59� and 	+ ≈ 0.31�. Notice also the similarity between

Figs. 10–12 concerning the isolated mass point close to ei 2�
3 .
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Fig. 9. �n(a; ui ) for a2n−1 randomly distributed on � �
2
( 1

4 ) and a2n = 3
4 .
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Fig. 10. �n(a; uw) for an = sin( 3�
8 )e

±i �
3 if n is prime/not prime and w = e

i �
3 .

5. Applications to the continued fractions

In this section, we will show some applications of the previous results to the study of rational
approximants of Carathéodory functions. In what follows, fn(z) ⇒ f (z), z ∈ �, means that the
sequence (fn)n�1 uniformly converges to f on compact subsets of �.

It is known that the monic orthogonal polynomials (�n)n�0 corresponding to a measure � on
T and the related monic second kind polynomials (�n)n�0 provide rational approximants for the
associated Carathéodory function

F�(z) :=
∫

T

� + z

� − z
d�(�).
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Fig. 11. �n(a; uw) for an randomly distributed on {sin( 3�
8 )e

±i �
3 } and w = e

i �
3 .

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

n = 1000

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

n = 1001

Fig. 12. �n(a; uw) for an = sin( 3�
8 )e

±i �
3 if n is even/odd and w = e

i �
3 .

More precisely, �∗
n(z)/�

∗
n(z) ⇒ F�(z), z ∈ D, and −�n(z)/�n(z) ⇒ F�(z), z ∈ C\D [20].

When supp � 
= T, it is possible to enlarge the above domains of convergence through a careful
analysis of the asymptotic behaviour of the zeros of the orthonormal polynomials
[21, Section 9].

All these can be read as results about the convergence of continued fractions. Remember that,
given a continued fraction

K := 
0 + 	1


1 + 	2

2 +

. . .

,
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the related w-modified nth approximant is

Kw
n := 
0 + 	1


1 + 	2

2 +

. . .

+ 	n


n + w

.

In particular, Kn := K0
n is called the nth approximant of K. It is known that (see [30])

Kw
n = An + wAn−1

Bn + wBn−1
, n�0, (24)

where An and Bn are given by the same recurrence

Xn = 
nXn−1 + 	nXn−2, Xn = An, Bn, n�0,

but with different initial conditions A0 = 
0, A−1 = 1 and B0 = 1, B−1 = 0.
The recurrences for �n and �n show that A2n = �∗

n(z), B2n = �∗
n(z), A2n+1 = −z�n(z) and

B2n+1 = z�n(z) for the continued fraction [20]

K(a; z) := 1 + −2z

z + 1

a1 + �2
1z

a1z + 1

a2 + �2
2z

a2z +
. . .

, (25)

where a is the sequence of Schur parameters of �. Hence, �∗
n(z)/�

∗
n(z) and −�n(z)/�n(z) are, re-

spectively, the 2nth approximant K2n(a1, . . . , an; z) and the 2n+1th approximant K2n+1(a1, . . . ,

an; z) of K(a; z).
It is also clear from (24) that for any u ∈ T [20]

K2n(a1, . . . , an−1, u; z) = Ku
2n−1(a1, . . . , an−1; z) = −�u

n(z)

�u
n(z)

, n�1, (26)

where �u
n(z) := z�n−1(z) + u�∗

n−1(z) and �u
n(z) := z�n−1(z) − u�∗

n−1(z). Therefore, these
modified approximants are quotients of para-orthogonal polynomials. In fact, given a sequence u
in T, the convergence properties for the modified approximants −�un

n /�un
n are, in general, better

than for the standard ones, since it is known that −�un
n (z)/�un

n (z) ⇒ F�(z), z ∈ C\T [20]. The
aim of this section is to find information about the convergence of these modified approximants
on the unit circle.

Closely related to the concept of Carathéodory function is the notion of resolvent Rz(T ) :=
(z − T )−1 of an operator T ∈ B(H), which is again a bounded operator on H for z ∈ C\�(T ).
Moreover, when T is normal, ‖Rz(T )‖ = 1/d(z, �(T )) for z ∈ C\�(T ). The Carathéodory
function of a measure � on T with Schur parameters sequence a is related to the resolvent
Rz(a) := Rz(C(a)), which is a bounded operator on �2 for z ∈ C\supp �. In fact,∫

T
�n d(EC(a)(�)e1, e1) = (C(a)ne1, e1) = (U�n1, 1) =

∫
T

�n d�(�), ∀n ∈ Z,
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and, thus, d�(�) = d(EC(a)(�)e1, e1). Therefore,

F�(z) =
∫

T

� + z

� − z
d(EC(a)(�)e1, e1) = 1 − 2z(Rz(a)e1, e1).

Also, for any u ∈ T, the modified approximant −�u
n/�

u
n is related to the resolvent Rz(a1, . . . ,

an−1, u) := Rz(C(a1, . . . , an−1, u)), which defines an operator on �2
n for z outside the spectrum of

C(a1, . . . , an−1, u). More precisely, if fj := 1−2z(Rz(a1, . . . , an−1, u)e1, ej ) for j = 1, . . . , n,
the vector f := ∑n

j=1 fj ej satisfies

(C(a1, . . . , an−1, u) − z)f = (C(a1, . . . , an−1, u) + z)e1.

Just solving this system for f1 we get

f1 = −det(z − V C(−a1, . . . , −an−1, −u)V ∗)
det(z − C(a1, . . . , an−1, u))

,

where V is the linear operator on �2
n defined by V ej = (−1)j ej , j = 1, . . . , n. From Corollary

2.4, �u
n(z) = det(z − C(a1, . . . , an−1, u)), so, we finally get

−�u
n(z)

�u
n(z)

= 1 − 2z(Rz(a1, . . . , an−1, u)e1, e1).

As a consequence of the previous discussion, given a sequence u in T, the weak convergence of
(R̂z(a1, . . . , an−1, un))n�1 to Rz(a) implies the convergence of (−�un

n (z)/�un
n (z))n�1 to F�(z).

In the case of self-adjoint band operators, the convergence of the resolvents of finite orthogonal
truncations was analysed in [4] and [18], in connection with its interest for the Jacobi fractions.
An extension of the ideas in [4] and [18] gives the following result.

Proposition 5.1. Let T ∈ B(�2) be a normal band operator. If Tn is a normal truncation of T on
�2
n for n�1 and (‖Tn‖)n�1 is bounded, for all x ∈ �2,

R̂z(Tn)x ⇒ Rz(T )x, z ∈ C\ lim
n

�(Tn).

Moreover, each z ∈ limn �(Tn)\ limn �(Tn) has a neighbourhood where the above uniform con-
vergence holds at least for a subsequence of (Tn)n�1.

Proof. Let z ∈ C\ limn �(Tn). There exist � > 0 and a subsequence (Tn)n∈I such that d(z, �(Tn))

��, ∀n ∈ I. Hence, D�(z) ⊂ C\ limn �(Tn) and, from Proposition 2.1.1, D�(z) ⊂ C\�(T ).
Therefore, Rw(T ) ∈ B(�2) for w ∈ D�(z). Also, Rw(Tn) exists for n ∈ I and w ∈ D�(z).
Moreover, since Tn is normal, ‖Rw(Tn)‖ = 1/d(w, �(Tn))�1/(� − |w − z|) for n ∈ I. Hence,
(‖Rw(Tn)‖)n∈I is uniformly bounded with respect to w on compact subsets of D�(z).

Let Pn be the orthogonal projection on �2
n and w ∈ D�(z). From the identities R̂w(Tn) =

PnRw(T̂n) and Rw(T̂n) − Rw(T ) = Rw(T̂n)(T̂n − T )Rw(T ) we get

R̂w(Tn) − Rw(T ) = R̂w(Tn)(T̂n − T )Rw(T ) + (Pn − 1)Rw(T ).
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Proposition 2.1.1 states that T̂n → T . Since Pn → 1 and (‖Rw(Tn)‖)n∈I is bounded we conclude
that R̂w(Tn) →

n∈I
Rw(T ). Moreover, the equality

R̂w′(Tn) − Rw′(T ) = R̂w(Tn) − Rw(T ) + (w′ − w)(Rw(T )Rw′(T ) − R̂w′(Tn)R̂w(Tn))

shows that, given x ∈ H and � > 0, there is a disk centred at w such that ‖R̂w′(Tn)x −
Rw′(T )x‖ < � for w′ lying on such a disk and n big enough. Then, standard arguments prove that
R̂w(Tn)x ⇒

n∈I
Rw(T )x, w ∈ D�(z).

In the preceding discussion, if z /∈ limn �(Tn), the subsequence (Tn)n∈I can be chosen such
that I = {n ∈ N : n�N}, N ∈ N, and, so, the uniform convergence R̂w(Tn)x ⇒ Rw(T )x,
w ∈ D�(z), holds for the full sequence. Therefore, the convergence is uniform on compact
subsets of C\ limn �(Tn). �

From the preceding proposition a result for the resolvent of C(a) immediately follows.

Theorem 5.2. Given a sequence a in D and a sequence u in T, for all x ∈ �2,

R̂z(a1, . . . , an−1, un)x ⇒ Rz(a)x, z ∈ C\ lim
n

�n(a; u).

Moreover, each z ∈ limn �n(a; u)\supp � (up to, at most, one point) has a neighbourhood where
the above uniform convergence holds at least for a subsequence.

Proof. Apply Proposition 5.2 to C(a) and its finite unitary truncations C(a1, . . . , an, un), taking
into account that, from Theorem 4.17, limn �n(a; u) coincides with supp � up to, at most, at one
point. �

Since the strong convergence of operators implies the weak convergence, we get a conclusion
for the convergence of the modified approximants (26).

Corollary 5.3. If a is the sequence of Schur parameters of a measure � on T and u is a sequence
in T,

K2n(a1, . . . , an−1, un; z) ⇒ F�(z), z ∈ C\ lim
n

�n(a; u).

Moreover, each z ∈ limn �n(a; u)\supp � (up to, at most, one point) has a neighbourhood where
the above uniform convergence holds at least for a subsequence.

This corollary says that (�un
n /�un

n )n�1 converges to F�, not only outside the unit circle, but
also at the points in the unit circle that are not limit points of the zeros of the para-orthogonal
polynomials (�un

n )n�1. The results of the previous sections can now be used to get information
about the convergence of the sequence (�un

n /�un
n )n�1, as the following examples show.

Example 5.4. Let a be the sequence of Schur parameters of a measure � on T and let u be a
sequence in T.

1. Schur parameters converging to the unit circle.
If limn |an| = 1 and un = an|an| , Corollary 4.8 gives

K2n(a1, . . . , an−1, un; z) ⇒ F�(z), z ∈ C\supp �.
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2. Rotated asymptotically 2-periodic Schur parameters.
Let limn a2n−1(�) = ao, limn a2n(�) = ae, � ∈ T. Example 4.9 shows that, if un = an|an| , the
conditions �o�e ∓ Re(aoae) < min{|ao|, |ae|}, respectively, imply that

K2n(a1, . . . , an−1, un; z) ⇒ F�(z), z ∈ C\(supp � ∪ 
±(±�)),

where 
± ∈ (0, �] are given by cos

±
2 =

√
1+�o�e∓Re(aoae)

1+min{|ao|,|ae|} .
3. The limit points of the odd and even subsequences of a(−�), � ∈ T, separated by a band.

If B(u, 	1, 	2), u ∈ T, 0�	1 < 	2 ��, is such a band, Theorems 3.4 and 4.11 prove that

K2n(a1, . . . , an−1, u
w
n ; z) ⇒ F�(z), z ∈ C\(supp � ∪ 	(�) ∪ {w}),

where 	 ∈ (0, �] is given by sin 	
2 = max{sin 	2

2 − sin 	1
2 , cos 	1

2 − cos 	2
2 } and w is arbitrarily

chosen in �	(�).
4. (

an+1
an

)n�1 converging to the unit circle.

Let us suppose that L{ an+1
an

} ⊂ ��(�), � ∈ T, � ∈ [0, �). Theorems 3.10, 4.11 and Corollary

3.9 imply that, if sin
�

2
< lim

n
|an|, then

K2n(a1, . . . , an−1, u
w
n ; z) ⇒ F�(z), z ∈ C\(supp � ∪ 	−�(�) ∪ {w}),

where 	 ∈ [0, �] is given by sin 	
2 = limn |an| and w is any point in �	−�(�).

In particular, in the López class limn
an+1
an

= � ∈ T, limn |an| ∈ (0, 1), we have � = 0 and
{supp �}′ = 	(�), hence,

K2n(a1, . . . , an−1, u
w
n ; z) ⇒ F�(z), z ∈ C\(supp � ∪ {w}),

if we choose w ∈ �	(�).
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[20] W.B. Jones, O. Njåstad, W.J. Thron, Moment theory, orthogonal polynomials, quadrature, and continued fractions

associated with the unit circle, Bull. London Math. Soc. 21 (1989) 113–152.
[21] S.V. Khrushchev, Classification theorems for general orthogonal polynomials on the unit circle, J. Approx. Theory

116 (2002) 268–342.
[22] C. Kuratowski, Topologie, third ed., Polska Akad. Nauk, Warsaw, 1961.
[23] F. Peherstorfer, A special class of polynomials orthogonal on the unit circle including the associated polynomials,

Constr. Approx. 12 (1996) 161–185.
[24] F. Peherstorfer, R. Steinbauer, Orthogonal polynomials on arcs of the unit circle, II. Orthogonal polynomials with

periodic reflection coefficients, J. Approx. Theory 87 (1996) 60–102.
[25] B. Simon, Orthogonal polynomials on the unit circle: new results, Internat. Math. Res. Notices 53 (2004)

2837–2880.
[26] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, AMS Colloquium Publication, vol.

54.1, AMS, Providence, RI, 2005.
[27] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, AMS Colloquium Publication, vol.

54.2, AMS, Providence, RI, 2005.
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